Surface bundles with non-zero signature

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface bundles with non-zero signature

In this paper we develop a new technique that yields infinitely many surface bundles with non-zero signature. © 2007 Elsevier B.V. All rights reserved.

متن کامل

A Construction of Surface Bundles over Surfaces with Non-zero Signature

Let Σg (respectively Σ/J be a closed oriented surface of genus g (respectively h), where g (respectively h) is a non-negative integer. Let Diff+Σh be the group of all orientation-preserving difϊeomorphisms of Σ/j with C°°-topology. A Σ^bundle over Σg (also called a surface bundle over a surface) is fiber bundle ξ = (£", Σg,p, Σ/^Diff+Σfr) over Σ^ with total space E, fiber Σ&, projection p : E —...

متن کامل

A new proof of the signature formula for surface bundles

Let E → X be an oriented surface bundle over a closed surface. Then the signature sign(E) is determined by the first Chern class of the flat vector bundle Γ associated to the monodromy homomorphism χ :π1(X)→ Sp2h(Z) of E, it is equal to −4〈c1(Γ ), [X]〉. The aim of this paper is to give an algebro-topological proof of this formula, i.e., one that does not use the Atiyah–Singer index theorem.  2...

متن کامل

Surface Bundles with Genus Two Heegaard Splittings

It is known that there are surface bundles of arbitrarily high genus which have genus two Heegaard splittings. The simplest examples are Seifert fibered spaces with the sphere as a base space, three exceptional fibers and which allow horizontal surfaces. We characterize the monodromy maps of all surface bundles with genus two Heegaard splittings and show that each is the result of integral Dehn...

متن کامل

Line Bundles Associated with Normal Surface Singularities

In [15] L. Nicolaescu and the author formulated a conjecture which relates the geometric genus of a complex analytic normal surface singularity (X, 0) (whose link M is a rational homology sphere) with the Seiberg-Witten invariant of M associated with the “canonical” spin structure of M . (The interested reader is invited to see the articles [15, 16, 17, 13, 19, 20] for the verification of the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2007

ISSN: 0166-8641

DOI: 10.1016/j.topol.2007.02.009